4.6 Article

Inner and outer edge states in graphene rings: A numerical investigation

期刊

PHYSICAL REVIEW B
卷 79, 期 12, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.125414

关键词

electronic structure; energy gap; graphene; Landau levels; tight-binding calculations

资金

  1. FAPESP
  2. CNPq

向作者/读者索取更多资源

We numerically investigate quantum rings in graphene and find that their electronic properties may be strongly influenced by the geometry, the edge symmetries, and the structure of the corners. Energy spectra are calculated for different geometries (triangular, hexagonal, and rhombus-shaped graphene rings) and edge terminations (zigzag, armchair, as well as the disordered edge of a round geometry). The states localized at the inner edges of the graphene rings describe different evolution as a function of magnetic field when compared to those localized at the outer edges. We show that these different evolutions are the reason for the formation of subbands of edge-states energy levels, separated by gaps (anticrossings). It is evident from mapping the charge densities that the anticrossings occur due to the coupling between inner and outer edge states.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据