4.6 Article

Guided propagation along quadrupolar chains of plasmonic nanoparticles

期刊

PHYSICAL REVIEW B
卷 79, 期 23, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.79.235412

关键词

-

资金

  1. U.S. Air Force Office of Scientific Research (AFOSR) [FA9550-080220]

向作者/读者索取更多资源

The employment of periodic arrays of plasmonic nanoparticles has been proposed by several groups for enhanced transmission or absorption and for realizing optical nanowaveguides. Generally, due to their small transverse dimensions, such linear arrays have been operated near their dipolar resonance. However, it has been recently shown that nanoscale plasmonic particles may also support higher-order resonances, which provide some advantages in different applications. Here we derive a full-wave analytical closed-form dispersion equation for the guided and leaky modes supported by linear chains of nanoparticles near a quadrupolar resonance. We show that, despite the vanishing bandwidth of the individual quadrupolar resonance in each of the nanoparticles composing the chain, the overall bandwidth of quadrupolar chain guidance is relatively large due to strong coupling, even considering realistic losses and frequency dispersion of optical materials. Applications for low-damping optical nanotransmission lines and leaky-wave nanoantennas are suggested.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据