4.6 Article

Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots

期刊

PHYSICAL REVIEW B
卷 78, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.085434

关键词

-

资金

  1. NSF-MRSEC Program [DMR-0213282]
  2. Shared Experimental Facilities
  3. U.S. Army through the Institute for Soldier Nanotechnolgies [DAAD-19-02-0002]

向作者/读者索取更多资源

We investigate the mechanism of operation of hybrid organic/colloidal quantum dot light emitting devices (QD-LEDs). Novel quantum dot (QD) deposition methods allow us to change the location of an emissive QD monolayer within a QD-LED multilayer structure. We find that the quantum efficiency of devices improves by > 50% upon imbedding QD monolayers into the hole transporting laver < 10 nm away from the interface between hole and electron transporting layers. We consider two possible mechanisms responsible for this improvement: one based on a charge injection model of the device operation and the other based on an exciton energy-transfer model. In order to differentiate between the two suggested mechanisms, we fabricate a set of structures that enable control over charge injection into colloidal QDs. We find that the dominant process limiting QD-LED efficiency is charging of the QDs by trapped electrons. We demonstrate that with the set of organic materials implemented in this study, device efficiency is increased by maximizing energy transfer from organics to QDs and by limiting direct charge injection that contributes to QD charging.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据