4.6 Article

Heat transport through plasmonic interactions in closely spaced metallic nanoparticle chains

期刊

PHYSICAL REVIEW B
卷 77, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.075417

关键词

-

向作者/读者索取更多资源

We report a numerical investigation on the heat transfer through one-dimensional arrays of metallic nanoparticles closely spaced in a host material. Our simulations show that the multipolar interactions play a crucial role in the heat transport via collective plasmons. Calculations of the plasmonic thermal conductance and of the thermal conductivity in ballistic and diffusive regimes, respectively, have been carried out. (a) Using the Landauer-Buttiker formalism, we have found that, when the host material dielectric constant takes positive values, the multipolar interactions drastically enhance by several orders of magnitude the ballistic thermal conductance of collective plasmons compared with that of a classical dipolar chain. On the contrary, when the host material dielectric constant takes negative values, we have demonstrated the existence of nonballistic multipolar modes which annihilate the heat transfer through the chains. (b) Using the kinetic theory, we have also examined the thermal behavior of chains in the diffusion approximation. We have shown that the plasmonic thermal conductivity of metallic nanoparticle chains can reach 1% of the bulk metal thermal conductivity. This result could explain the anomalously high thermal conductivity observed in many colloidal suspensions, the so-called nanofluids.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据