4.6 Article

Structural properties and enthalpy of formation of magnesium hydride from quantum Monte Carlo calculations

期刊

PHYSICAL REVIEW B
卷 77, 期 10, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.104103

关键词

-

向作者/读者索取更多资源

We have used diffusion Monte Carlo (DMC) calculations to study the structural properties of magnesium hydride (MgH2), including the pressure-volume equation of state, the cohesive energy, and the enthalpy of formation from magnesium bulk and hydrogen gas. The calculations employ pseudopotentials and B-spline basis sets to expand the single particle orbitals used to construct the trial wave functions. Extensive tests on system size, time step, and other sources of errors, performed on periodically repeated systems of up to 1050 atoms, show that all these errors together can be reduced to below 10 meV/f.u.. We find excellent agreement with the experiments for the equilibrium volume of both the Mg and the MgH2 crystals. The cohesive energy of the Mg crystal is found to be 1.51 (1) eV and agrees perfectly with the experimental value of 1.51 eV. The enthalpy of formation of MgH2 from Mg bulk and H-2 gas is found to be 0.85 +/- 0.01 eV/f.u., or 82 +/- 1 kJ/mole, which is off the experimental one of 76.1 +/- 1 kJ/mole only by 6 kJ/mole. This shows that DMC can almost achieve chemical accuracy (1 kcal/mole) on this system. Density functional theory errors are shown to be much larger and depend strongly on the functional employed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据