4.6 Article

Midgap states and charge inhomogeneities in corrugated graphene

期刊

PHYSICAL REVIEW B
卷 77, 期 7, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.075422

关键词

-

向作者/读者索取更多资源

We study the changes induced by the effective gauge field due to ripples on the low energy electronic structure of graphene. We show that zero-energy Landau levels will form, associated with the smooth deformation of the graphene layer, when the height corrugation, h, and the length of the ripple, l, are such that h(2)/la greater than or similar to 1, where a is the lattice constant. The existence of localized levels gives rise to a large compressibility at zero energy and to the enhancement of instabilities arising from electron-electron interactions including electronic phase separation. The combined effect of the ripples and an external magnetic field breaks the valley symmetry of graphene, leading to the possibility of valley selection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据