4.6 Article

Electronic structure and phase stability of MgO, ZnO, CdO, and related ternary alloys

期刊

PHYSICAL REVIEW B
卷 77, 期 24, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.245209

关键词

-

向作者/读者索取更多资源

The electronic structure and phase stability of MgO, ZnO, CdO, and related alloys in the rocksalt (B1), zincblende (B3), and wurtzite (B4) crystal structures were examined within first-principles band structure theory; the thermodynamically stable phases are reproduced for each material. The band alignment and band-gap deformation potentials were analyzed, showing an increase in the valence band maximum from Mg to Zn to Cd. Ternary alloy formation was explored through application of the special quasirandom structure method. The B1 structure is stable over all (Mg,Cd)O compositions, as expected from the preferences of the binary oxides. The (Mg,Zn)O alloy undergoes a tetrahedral to octahedral transition above 34% Mg content, in agreement with experiment. For (Zn,Cd)O, a transition is predicted above 62% Cd content. These results imply that band-gap manipulation of ZnO from alloying with Mg (Cd) will be limited to 4.0 eV (1.6 eV), while preserving the tetrahedral coordination of the host.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据