4.6 Article

Quantitative description of plastic deformation in nanocrystalline Cu: Dislocation glide versus grain boundary sliding

期刊

PHYSICAL REVIEW B
卷 77, 期 13, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.134108

关键词

-

向作者/读者索取更多资源

Uniaxial plastic deformation of polycrystalline Cu with grain sizes in the range of 5-20 nm was studied by using molecular dynamics computer simulations. We developed a quantitative analysis of plasticity by using localized slip vectors to separate the contributions of dislocation activity from grain boundary sliding. We conclude that the competition between these two mechanisms depends on strain rate and grain size, with the dislocation activity increasing with grain size but decreasing with increasing strain rate. For samples with a 5 nm grain size, dislocations contribute approximate to 50% of the total plastic strain during steady state deformation at a rate of 1x10(8) s(-1), but this fraction decreases to 35% at a rate of 1x10(10) s(-1). When the grain size is increased to 20 nm, dislocations account for 90% of the strain, even at 1x10(10) s(-1). During the initial stages of plastic deformation, grain boundary sliding initially decreases with strain owing to strain-induced relaxation processes within the grain boundaries. The grains also rotate a few degrees during straining to 20%; the rate of rotation (per unit strain) slightly decreases with strain rate. Lastly, we computed the amount of forced atomic mixing during plastic deformation. The mean square separation distance between atom pairs within grain interiors increases with strain at a rate proportional to their distance apart (i.e., the mixing is superdiffusive), but for pair separations greater than the grain size, this rate becomes independent of the separation distance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据