4.6 Article

Diffusion-enhanced hole transport in thin polymer light-emitting diodes

期刊

PHYSICAL REVIEW B
卷 77, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.035206

关键词

-

向作者/读者索取更多资源

The transport of holes in polymer light-emitting diodes (PLEDs) based on poly(2-methoxy, 5-(2' ethyl-hexyloxy)-p-phenylene vinylene) (MEH-PPV) is investigated as a function of layer thickness. For thicknesses smaller than 100 nm, the current in these thin PLEDs is strongly enhanced as compared to the expected space-charge limited (SCL) current. Applying the standard SCL model to measurements on a PLED with a thickness of only 40 nm results in an apparent increase of the hole mobility of a factor of 40. We show that this strong increase of the hole transport properties in these thin devices originates from the presence of an Ohmic hole contact. For Fermi-level alignment, holes diffuse from the contact into the MEH-PPV, forming an accumulation layer with a width of a few tens of nanometers. Due to the density dependence of the mobility, the hole transport in this accumulation region is strongly enhanced. For the analysis of thin PLEDs, it is therefore essential that both drift and diffusion of charge carriers are taken into account.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据