4.6 Article

Theory of nonequilibrium spin transport and spin-transfer torque in superconducting-ferromagnetic nanostructures

期刊

PHYSICAL REVIEW B
卷 78, 期 17, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.174511

关键词

-

向作者/读者索取更多资源

Spin transport currents and the spin-transfer torques in voltage-biased superconducting-ferromagnetic nanopillars (SFNFS point contacts) are computed. We develop and implement an algorithm based on the Ricatti formulation of the quasiclassical theory of superconductivity to solve the time-dependent boundary conditions for the nonequilibrium Green's functions for spin transport through the ferromagnetic interfaces. A signature of the nonequilibrium torque is a component perpendicular to the plane spanned by the two ferromagnetic moments. The perpendicular component is absent in normal-metal-ferromagnetic nanopillar contacts but is shown to have the same order of magnitude as the in-plane torque for nonequilibrium SFNFS contacts. The out-of-plane torque is due to the rotation of quasiparticle spin by the exchange fields of the ferromagnetic layers. In the ballistic limit the equilibrium torque is related to the spectrum of spin-polarized Andreev bound states, while the ac component, for small bias voltages, is determined by the nearly adiabatic dynamics of the Andreev bound states. The nonlinear voltage dependence of the nonequilibrium torque, including the subharmonic gap structure and the high-voltage asymptotics, is attributed to the interplay between multiple Andreev reflections, spin filtering, and spin mixing. These properties of spin angular momentum transport may be exploited to control the state of nanomagnets.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据