4.6 Article

Length-dependent conductance and thermopower in single-molecule junctions of dithiolated oligophenylene derivatives: A density functional study

期刊

PHYSICAL REVIEW B
卷 78, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.035315

关键词

-

向作者/读者索取更多资源

We study theoretically the length dependence of both conductance and thermopower in metal-molecule-metal junctions made up of dithiolated oligophenylenes contacted to gold electrodes. We find that while the conductance decays exponentially with increasing molecular length, the thermopower increases linearly as suggested by recent experiments. We also analyze how these transport properties can be tuned with methyl side groups. Our results can be explained by considering the level shifts due to their electron-donating character as well as the tilt-angle dependence of conductance and thermopower. Qualitative features of the substituent effects in our density functional calculations are explained using a tight-binding model. In addition, we observe symmetry-related even-odd transmission channel degeneracies as a function of molecular length.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据