4.6 Article

Origin of large thermopower in LiRh2O4:: Calculation of the Seebeck coefficient by the combination of local density approximation and dynamical mean-field theory

期刊

PHYSICAL REVIEW B
卷 78, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.115121

关键词

-

资金

  1. Scientific Research (MEXT, Japan) [19019012, 19014022, 19051016]
  2. Russian Foundation for Basic Research (RFBR) [07-02-00041]
  3. Grants-in-Aid for Scientific Research [19014022, 19019012] Funding Source: KAKEN

向作者/读者索取更多资源

Motivated by the newly synthesized mixed-valent spinel LiRh2O4 for which a large thermopower is observed in the metallic cubic phase above 230 K [Y. Okamoto et al., Phys. Rev. Lett. 101, 086404 (2008)], we calculate the Seebeck coefficient by the combination of local density approximation and dynamical mean-field theory (LDA+DMFT). The experimental values are well reproduced not only by LDA+DMFT but also by the less involved Boltzmann equation approach. A careful analysis of the latter shows unexpectedly that the origin of the large thermopower shares a common root with a very different oxide: NaxCoO2. We also discuss how it is possible to further increase the power factor of LiRh2O4 through doping, which makes the material even more promising for technological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据