4.6 Article

Skyrme and Wigner crystals in graphene

期刊

PHYSICAL REVIEW B
卷 78, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.085309

关键词

-

资金

  1. Natural Sciences and Engineering Research Council of Canada (NSERC) [DMR-0704033]

向作者/读者索取更多资源

At low energy, the band structure of graphene can be approximated by two degenerate valleys (K,K') about which the electronic spectra of the valence and conduction bands have linear dispersion relations. An electronic state in this band spectrum is a linear superposition of states from the A and B sublattices of the honeycomb lattice of graphene. In a quantizing magnetic field, the band spectrum is split into Landau levels with level N=0 having zero weight on the B(A) sublattice for the K(K') valley. Treating the valley index as a pseudospin and assuming the real spins to be fully polarized, we compute the energy of Wigner and Skyrme crystals in the Hartree-Fock approximation. We show that Skyrme crystals have lower energy than Wigner crystals (WCs), i.e., crystals with no pseudospin texture in some range of filling factor v around integer fillings. The collective mode spectrum of the valley-skyrmion crystal has three linearly dispersing Goldstone modes in addition to the usual phonon mode, while a WC has only one extra Goldstone mode with a quadratic dispersion. We comment on how these modes should be affected by disorder and how, in principle, a microwave absorption experiment could distinguish between Wigner and Skyrme crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据