4.6 Article

Sum rules and bath parametrization for quantum cluster theories

期刊

PHYSICAL REVIEW B
卷 78, 期 11, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.115102

关键词

-

向作者/读者索取更多资源

We analyze cellular dynamical mean-field theory (CDMFT) and the dynamical cluster approximation (DCA). We derive exact sum-rules for the hybridization functions and give examples for dynamical mean-field theory, CDMFT, and DCA. For impurity solvers based on a Hamiltonian, these sum rules can be used to monitor convergence of the bath-parametrization. We further discuss how the symmetry of the cluster naturally leads to a decomposition of the bath Green matrix into irreducible components, which can be parametrized independently, and give an explicit recipe for finding the optimal bath parametrization. As a benchmark we revisit the one-dimensional Hubbard model. We carefully analyze the evolution of the density as a function of chemical potential and find that, close to the Mott transition, convergence with cluster size is unexpectedly slow. Going from one to two dimensions we find that fitting the bath becomes in general significantly more difficult, requiring a large number of bath sites. For such large baths our symmetry-adapted approach should prove crucial for finding a reliable bath-parametrization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据