4.6 Article

Many-body electronic structure of metallic α-uranium

期刊

PHYSICAL REVIEW B
卷 78, 期 8, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.081101

关键词

-

资金

  1. U.S. Department of Energy at Los Alamos National Laboratory [DE-AC52-06NA25396]
  2. ONR [N00014-07-1-0479]
  3. DOE [DE-FG02-06ER46302]

向作者/读者索取更多资源

We present results for the electronic structure of a-uranium using a recently developed quasiparticle self-consistent GW (QSGW) method. This is the first time that the f-orbital electron-electron interactions in an actinide have been treated by a first-principles method beyond the level of the generalized gradient approximation (GGA) or the local-density approximation (LDA) to the density-functional theory (DFT). We show that the QSGW approximation predicts an f-level shift upward of about 0.5 eV with respect to the other metallic s-d states and that there is a significant f-band narrowing when compared to LDA band-structure results. We predict a considerable QSGW enhancement of the linear coefficient of specific heat. Nonetheless, because of the overall low f-electron occupation number in uranium, ground-state properties and the occupied band structure around the Fermi energy are not significantly affected. The correlations predominate in the unoccupied part of the f states. This provides the first formal justification for the success of LDA and GGA calculations in describing the ground-state properties of this material.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据