4.6 Article

Fractional quantum Hall effect at ν=5/2:: Ground states, non-Abelian quasiholes, and edge modes in a microscopic model

期刊

PHYSICAL REVIEW B
卷 77, 期 16, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.165316

关键词

-

向作者/读者索取更多资源

We present a comprehensive numerical study of a microscopic model of the fractional quantum Hall system at filling fraction nu=5/2, based on the disk geometry. Our model includes Coulomb interaction and a semirealistic confining potential. We also mix in a three-body interaction in some cases to help elucidate the physics. We obtain a phase diagram, discuss the conditions under which the ground state can be described by the Moore-Read state, and study its competition with neighboring stripe phases. We also study quasihole excitations and edge excitations in the Moore-Read-like state. From the evolution of the edge spectrum, we obtain the velocities of the charge and neutral edge modes, which turn out to be very different. This separation of velocities is a source of decoherence for a non-Abelian quasihole and/or quasiparticle (with charge +/- e/4) when propagating at the edge; using numbers obtained from a specific set of parameters, we estimate the decoherence length to be around 4 mu m. This sets an upper bound for the separation of the two point contacts in a double point-contact interferometer, designed to detect the non-Abelian nature of such quasiparticles. We also find a state that is a potential candidate for the recently proposed anti-Pfaffian state. We find the speculated anti-Pfaffian state is favored in weak confinement (smooth edge), while the Moore-Read Pfaffian state is favored in strong confinement (sharp edge).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据