4.6 Article

Diffusion-reaction modeling of silicon oxide interlayer growth during thermal annealing of high dielectric constant materials on silicon

期刊

PHYSICAL REVIEW B
卷 77, 期 20, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.77.205304

关键词

-

向作者/读者索取更多资源

We present the quantitative physicochemical modeling of the thermal annealing of high dielectric constant (k) thin films on silicon in oxygen and/or inert ambient. In particular, we study the kinetics of the SiO2 interfacial layer growth at the high-k material structure/Si interface. Upon annealing, the transport of oxygen species in the high-k film to the silicon interface is quantitatively evaluated. One-dimensional unsteady-state diffusion-reaction equations are used to model the time evolution of the interfacial SiO2 layer thickness. Because of the continuously increasing interfacial SiO2 layer, the proposed model incorporates the moving interface that alters the diffusion length of the oxygen species. The numerical solution of the resulting modeling equations is based on the finite volume analysis method and it results in SiO2 thickness profiles that comprise of an early fast growth stage followed by pseudo saturation into a self-limited regime. Our model predictions are found to satisfactorily agree with published experimental results. We also study the use of alumina as a potential oxygen diffusion barrier. Alumina is predicted to be an efficient barrier to oxygen diffusion, which is in agreement with published experimental data.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据