4.6 Article

Experimental consequences of the s-wave cos(kx)cos(ky) superconductivity in the iron pnictides

期刊

PHYSICAL REVIEW B
卷 78, 期 14, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.144514

关键词

-

向作者/读者索取更多资源

The experimental consequences of different order parameters in iron-based superconductors are theoretically analyzed. We consider both nodeless and nodal order parameters, with emphasis on the cos(k(x))cos(k(y)) nodeless order parameter recently derived by Seo [arXiv:0805.2958, Phys. Rev. Lett. (to be published)]. We analyze the effect of this order parameter on the spectral function, density of states, tunneling differential conductance, penetration depth, and the NMR spin-relaxation time. This extended s-wave symmetry has line zeros in between the electron and hole pockets, but they do not intersect the two Fermi surfaces for moderate doping, and the superconductor is fully gapped. However, this suggests several quantitative tests: the exponential decay of the penetration depth weakens and the density of states reveals a smaller gap upon electron or hole doping. Moreover, the cos(k(x))cos(k(y)) superconducting gap is largest on the smallest (hole) Fermi surface. For the 1/T-1 NMR spin-relaxation rate, the interband contribution is consistent with the current experimental results, including a (nonuniversal) T-3 behavior and the absence of a coherence peak. However, the intraband contribution is considerably larger than the interband contributions and still exhibits a small enhancement in the NMR spin-relaxation rate right below T-c in the clean limit.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据