4.6 Article

Time-resolved investigation of magnetization dynamics of arrays of nonellipsoidal nanomagnets with nonuniform ground states

期刊

PHYSICAL REVIEW B
卷 78, 期 21, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.214412

关键词

ferromagnetic materials; ground states; magnetisation; micromagnetics; nanostructured materials; scanning probe microscopy

资金

  1. UK Engineering and Physical Sciences Research Council (EPSRC)
  2. New Energy and Industrial Technology Development Organization (NEDO)
  3. EPSRC [EP/D000572/1] Funding Source: UKRI

向作者/读者索取更多资源

Time-resolved scanning Kerr microscopy measurements have been performed upon arrays of square ferromagnetic nanoelements of different sizes and for a range of bias fields. The experimental results were compared to micromagnetic simulations of model arrays in order to understand the nonuniform precessional dynamics within the elements. In the experimental spectra acquired from an element of length of 236 nm and thickness of 13.6 nm, two branches of excited modes were observed to coexist above a particular bias field. Below this so-called crossover field, the higher frequency branch was observed to vanish. Micromagnetic simulations and Fourier imaging revealed that modes from the higher frequency branch had large amplitude at the center of the element where the effective field was parallel to the bias field and the static magnetization. Modes from the lower frequency branch had large amplitude near the edges of the element perpendicular to the bias field. The simulations revealed significant canting of the static magnetization and effective field away from the direction of the bias field in the edge regions. For the smallest element sizes and/or at low bias field values, the effective field was found to become antiparallel to the static magnetization. The simulations revealed that the majority of the modes were delocalized with finite amplitude throughout the element while the spatial character of a mode was found to be correlated with the spatial variation in the total effective field and the static magnetization state. The simulations also revealed that the frequencies of the edge modes are strongly affected by the spatial distribution of the static magnetization state both within an element and within its nearest neighbors. Furthermore, the simulations suggest that collective modes may be supported in arrays of interacting nanomagnets, which act as magnonic crystals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据