4.6 Article

Self-consistent solution for proximity effect and Josephson current in ballistic graphene SNS Josephson junctions

期刊

PHYSICAL REVIEW B
卷 78, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.78.024504

关键词

-

向作者/读者索取更多资源

We use a tight-binding Bogoliubov-de Gennes (BdG) formalism to self-consistently calculate the proximity effect, Josephson current, and local density of states in ballistic graphene superconductor-normal conductor-superconductor (SNS) Josephson junctions. Both short and long junctions, with respect to the superconducting coherence length, are considered, as well as different doping levels of the graphene. We show that self-consistency does not notably change the current-phase relationship derived earlier for short junctions using the non-self-consistent Dirac-BdG formalism [M. Titov and C. W. J. Beenakker, Phys. Rev. B 74, 041401(R) (2006)] but predict a significantly increased critical current with a stronger junction-length dependence. In addition, we show that in junctions with no Fermi-level mismatch between the N and S regions, superconductivity persists even in the longest junctions we can investigate, indicating a diverging Ginzburg-Landau superconducting coherence length in the normal region.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据