4.6 Article

Rotational Doppler velocimetry to probe the angular velocity of spinning microparticles

期刊

PHYSICAL REVIEW A
卷 90, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.90.011801

关键词

-

资金

  1. EPSRC
  2. Royal Society
  3. EPSRC [EP/I007822/1] Funding Source: UKRI
  4. Engineering and Physical Sciences Research Council [EP/I007822/1] Funding Source: researchfish

向作者/读者索取更多资源

Laser Doppler velocimetry is a technique used to measure linear velocity, ranging from that of exhaust gases to blood flow. A rotational analog of laser Doppler velocimetry was recently demonstrated, using a rotationally symmetric interference pattern to probe the angular velocity of a spinning object. In this work, we demonstrate the use of a diffraction-limited structured illumination pattern to measure the angular velocity of a micron-sized particle trapped and spinning at tens of Hz in an optical trap. The technique requires no detailed knowledge of the shape of the particle, or the distribution of scatterers within it, and is independent of the particle's chirality, transparency, and birefringence. The particle is also subjected to Brownian motion, which complicates the signal by affecting the rotation rate and the rotation axis. By careful consideration of these influences, we show how the measurement is robust to both, representing a technique with which to probe the rotational motion of microscale particles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据