4.6 Article

Composite pulses for interferometry in a thermal cold atom cloud

期刊

PHYSICAL REVIEW A
卷 90, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.90.033608

关键词

-

资金

  1. UK Engineering and Physical Sciences Research Council [GR/S71132/01]
  2. Engineering and Physical Sciences Research Council [GR/S71132/01] Funding Source: researchfish

向作者/读者索取更多资源

Atom interferometric sensors and quantum information processors mustmaintain coherence while the evolving quantum wave function is split, transformed, and recombined, but suffer from experimental inhomogeneities and uncertainties in the speeds and paths of these operations. Several error-correction techniques have been proposed to isolate the variable of interest. Here we apply composite pulse methods to velocity-sensitive Raman state manipulation in a freely expanding thermal atom cloud. We compare several established pulse sequences, and follow the state evolution within them. The agreement between measurements and simple predictions shows the underlying coherence of the atom ensemble, and the inversion infidelity in a similar to 80 mu K atom cloud is halved. Composite pulse techniques, especially if tailored for atom interferometric applications, should allow greater interferometer areas, larger atomic samples, and longer interaction times, and hence improve the sensitivity of quantum technologies from inertial sensing and clocks to quantum information processors and tests of fundamental physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据