4.6 Article

Single-scan quantum process tomography

期刊

PHYSICAL REVIEW A
卷 90, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.90.052301

关键词

-

资金

  1. DST [SR/S2/LOP-0017/2009]

向作者/读者索取更多资源

The standard procedure for quantum process tomography (QPT) requires a series of experiments. Each experiment involves initialization of the system to a particular basis state, applying the quantum process e on the system, and finally characterizing the output state by quantum state tomography (QST). The output states collected for a complete set of basis states enable us to calculate the. matrix characterizing the process e. The standard procedure for QST itself requires independent experiments, each involving measurement of a set of commuting observables. Thus QPT procedure demands a number of independent measurements and, moreover, this number increases rapidly with the size of the system. However, in ensemble systems, the total number of independent measurements can be greatly reduced with the availability of ancilla qubits. Ancilla-assisted process tomography (AAPT) has earlier been shown to require a single QST of system-ancilla space. Ancilla-assisted quantum state tomography (AAQST) has also been shown to perform QST in a single-scan measurement of an ensemble system. Here we combine AAPT with AAQST to realize a single-scan QPT (SSPT), a procedure to characterize a general quantum process in a single ensemble measurement. We demonstrate experimental SSPT by characterizing several single-qubit processes using a three-qubit NMR quantum register. Furthermore, using the SSPT procedure, we experimentally characterize the twirling process and compare the results with theory.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据