4.6 Article

Time-dependent complete-active-space self-consistent-field method for multielectron dynamics in intense laser fields

期刊

PHYSICAL REVIEW A
卷 88, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.88.023402

关键词

-

资金

  1. Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan [23750007, 23656043, 23104708, 25286064]
  2. Advanced Photon Science Alliance (APSA) Project
  3. Grants-in-Aid for Scientific Research [23750007, 23656043, 25286064] Funding Source: KAKEN

向作者/读者索取更多资源

The time-dependent complete-active-space self-consistent-field (TD-CASSCF) method for the description of multielectron dynamics in intense laser fields is presented, and a comprehensive description of the method is given. It introduces the concept of frozen-core (to model tightly bound electrons with no response to the field), dynamical-core (to model electrons tightly bound but responding to the field), and active (fully correlated to describe ionizing electrons) orbital subspaces, allowing compact yet accurate representation of ionization dynamics in many-electron systems. The classification into the subspaces can be done flexibly, according to simulated physical situations and desired accuracy, and the multiconfiguration time-dependent Hartree-Fock (MCTDHF) approach is included as a special case. To assess its performance, we apply the TD-CASSCF method to the ionization dynamics of one-dimensional lithium hydride (LiH) and LiH dimer models, and confirm that the present method closely reproduces rigorous MCTDHF results if active orbital space is chosen large enough to include appreciably ionizing electrons. The TD-CASSCF method will open a way to the first-principles theoretical study of intense-field-induced ultrafast phenomena in realistic atoms and molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据