4.6 Article

Self-consistent quantum process tomography

期刊

PHYSICAL REVIEW A
卷 87, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.87.062119

关键词

-

资金

  1. IARPA [W911NF-10-1-0324]

向作者/读者索取更多资源

Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measurement operators used to interrogate the system are generated by gates that have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography cannot be fully corrected through oversampling or by performing a larger set of experiments. We present an alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation and measurement. In order tomake the resulting optimization tractable, we linearize about the target, a reasonable approximation when benchmarking a quantum computer as opposed to probing a black-box function.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据