4.6 Article

Quantum reading capacity under thermal and correlated noise

期刊

PHYSICAL REVIEW A
卷 87, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.87.062310

关键词

-

资金

  1. European Commission [213681]
  2. Italian Ministry of University and Research under the FIRB-IDEAS project [RBID08B3FM]
  3. Engineering and Physical Sciences Research Council [EP/J00796X/1]
  4. EPSRC [EP/J00796X/1] Funding Source: UKRI
  5. Engineering and Physical Sciences Research Council [EP/J00796X/1] Funding Source: researchfish

向作者/读者索取更多资源

Quantum communication theory sets the maximum rates at which information can be encoded and decoded reliably given the physical properties of the information carriers. Here we consider the problem of readout of a digital optical memory, where information is stored by means of the optical properties of the memory cells that are in turn probed by shining a laser beam on them. Interesting features arise in the regime in which the probing light has to be treated quantum mechanically. The maximum rate of reliable readout defines the quantum reading capacity, which is proven to overcome the classical reading capacity-obtained by probing with classical light-in several relevant settings. We consider a model of optical memory in which information is encoded in the (complex-valued) attenuation factor and study the effects on the reading rates of thermal and correlated noise. The latter type of noise arises when the effects of wave diffraction on the probing light beam are taken into account. We discuss the advantages of quantum reading over the classical one and show that the former is substantially more robust than the latter under thermal noise in the regime of low power per pulse.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据