4.6 Article

Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities

期刊

PHYSICAL REVIEW A
卷 87, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.87.022305

关键词

-

资金

  1. National Natural Science Foundation of China [10974020, 11174039, NCET-11-0031]
  2. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

We present some deterministic schemes to construct universal quantum gates, that is, controlled-NOT, three-qubit Toffoli, and Fredkin gates, between flying photon qubits and stationary electron-spin qubits assisted by quantum dots inside double-sided optical microcavities. The control qubit of our gates is encoded on the polarization of the moving single photon and the target qubits are encoded on the confined electron spins in quantum dots inside optical microcavities. Our schemes for these universal quantum gates on a hybrid system have some advantages. First, all the gates are accomplished with a success probability of 100% in principle. Second, our schemes require no additional qubits. Third, the control qubits of the gates are easily manipulated and the target qubits are perfect for storage and processing. Fourth, the gates do not require that the transmission for the uncoupled cavity is balanceable with the reflectance for the coupled cavity, in order to get a high fidelity. Fifth, the devices for the three universal gates work in both the weak coupling and the strong coupling regimes, and they are feasible in experiment. DOI: 10.1103/PhysRevA.87.022305

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据