4.6 Article

Dynamics of spin-1 bosons in an optical lattice: Spin mixing, quantum-phase-revival spectroscopy, and effective three-body interactions

期刊

PHYSICAL REVIEW A
卷 88, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.88.023602

关键词

-

资金

  1. US Army Research Office [60661PH]
  2. National Science Foundation Physics Frontier Center located at the Joint Quantum Institute
  3. Direct For Mathematical & Physical Scien
  4. Division Of Physics [822671] Funding Source: National Science Foundation

向作者/读者索取更多资源

We study the dynamics of spin-1 atoms in a periodic optical-lattice potential and an external magnetic field in a quantum quench scenario where we start from a superfluid ground state in a shallow lattice potential and suddenly raise the lattice depth. The time evolution of the nonequilibrium state shows collective collapse-and-revival oscillations of matter-wave coherence as well as oscillations in the spin populations. We show that the complex pattern of these two types of oscillations reveals details about the superfluid and magnetic properties of the initial many-body ground state. Furthermore, we show that the strengths of the spin-dependent and spin-independent atom-atom interactions can be deduced from the observations. The Hamiltonian that describes the physics of the final deep lattice not only contains two-body interactions but also effective multibody interactions, which arise due to virtual excitations to higher bands. We derive these effective spin-dependent three-body interaction parameters for spin-1 atoms and describe how spin mixing is affected. Spinor atoms are unique in the sense that multibody interactions are directly evident in the in situ number densities in addition to the momentum distributions. We treat both antiferromagnetic (e.g., Na-23) and ferromagnetic (e.g., Rb-87 and K-41) condensates.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据