4.6 Article

Stabilization of one-dimensional solitons against the critical collapse by quintic nonlinear lattices

期刊

PHYSICAL REVIEW A
卷 85, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.023824

关键词

-

资金

  1. Tel Aviv University
  2. German-Israel Foundation [149/2006]

向作者/读者索取更多资源

It has recently been discovered that stabilization of two-dimensional (2D) solitons against the critical collapse in media with cubic nonlinearity by means of nonlinear lattices (NLs) is a challenging problem. We address the one-dimensional (1D) version of the problem, i.e., the nonlinear-Schrodinger equation (NLSE) with quintic or cubic-quintic (CQ) terms, the coefficients in front of which are periodically modulated in space. The models may be realized in optics and Bose-Einstein condensates (BECs). Stability diagrams for the solitons are produced by means of numerical methods and analytical approximations. It is found that the sinusoidal NL stabilizes solitons supported by the quintic-only nonlinearity in a narrow stripe in the respective parameter plane, contrary to the case of the cubic nonlinearity in 2D, where the stabilization of solitons by smooth spatial modulations is not possible at all. The stability region is much broader in the 1D CQ model, where higher-order solitons may be stable too.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据