4.6 Article

Time shifts in photoemission from a fully correlated two-electron model system

期刊

PHYSICAL REVIEW A
卷 85, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.033401

关键词

-

资金

  1. FWF-Austria [SFB016, P21141-N16]
  2. National Science Foundation [TG-PHY090031]
  3. TU Vienna Doctoral Program Functional Matter

向作者/读者索取更多资源

We theoretically investigate time-resolved photoemission originating from two different shells (1s and 2p) of a fully correlated atomic two-electron model system ionized by an extreme-ultraviolet attosecond light pulse. The parameters of the model system are tuned such that the ionization potentials of the 1s and 2p electrons have values close to those of the 2s and 2p levels in a neon atom, for which a relative time delay has been measured in a recent attosecond streaking experiment by Schultze et al. [Science 328, 1658 (2010)]. Up to now theoretical efforts could account only for delays more than a factor of 2 shorter than the reported experimental value. By solving the time-dependent Schrodinger equation numerically exactly we explore the influence of correlations on the time delay previously implicated as one of the potential sources of discrepancies. We investigate the influence of the interplay between electron interactions and the probing streaking infrared field on the extracted relative delays between the two emission channels. We find that for our model system the inclusion of electronic correlation only slightly modifies the time shifts, as compared to a mean-field treatment. In particular, the correlation-induced time delay is contained in the Eisenbud-Wigner-Smith time delay for the photoionization process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据