4.6 Article

Nonlinear magnetoelectric metamaterials: Analysis and homogenization via a microscopic coupled-mode theory

期刊

PHYSICAL REVIEW A
卷 86, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.86.033816

关键词

-

资金

  1. Air Force Office of Scientific Research [FA9550-09-1-0562]

向作者/读者索取更多资源

Artificially structured metamaterials hybridized with elements that respond nonlinearly to incident electromagnetic fields can, from a macroscopic perspective, support nonlinear responses that cannot be described by purely electric or magnetic interactions. To investigate the mechanisms and behaviors of such interactions, termed nonlinear magnetoelectric coupling, we develop a set of coupled-mode equations for describing three-wave mixing in a metamaterial, using Bloch modes as the basis. By equating these coupled-mode equations to those of a homogenized system, we derive closed-form expressions for the macroscopic nonlinear susceptibilities. From these expressions, a great deal can be inferred about the nature and construction of magnetoelectric nonlinearities in metamaterials. As an example, we apply this method in the analysis of a prototypical nonlinear magnetoelectric metamaterial. In particular, we show that independent control of the eight second-order susceptibility tensors encompasses a massive parameter space from which new realms of nonlinear interference and wave manipulation can be accessed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据