4.6 Article

Nonthermal fixed points, vortex statistics, and superfluid turbulence in an ultracold Bose gas

期刊

PHYSICAL REVIEW A
卷 85, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.043627

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft [GA 677/7, GA 677/8]
  2. University of Heidelberg (FRONTIER, Excellence Initiative, Center for Quantum Dynamics)
  3. Helmholtz Association [HA216/EMMI]
  4. University of Leipzig (Grawp-Cluster)
  5. National Science Foundation [PHY05-51164]

向作者/读者索取更多资源

Nonthermal fixed points of the dynamics of a dilute degenerate Bose gas far from thermal equilibrium are analyzed in two and three spatial dimensions. Universal power-law distributions, previously found within a nonperturbative quantum-field theoretical approach and recently shown to be related to vortical dynamics and superfluid turbulence [Phys. Rev. B 84, 020506(R) (2011)], are studied in detail. The results imply an interpretation of the scaling behavior in terms of independent vortex excitations of the superfluid and show that the statistics of topological excitations can be described in the framework of wave turbulence. The particular scaling exponents observed in the single-particle momentum distributions are found to be consistent with irreversibility as well as conservation laws obeyed by the wave interactions. Moreover, long-wavelength acoustic excitations of the vortex-bearing condensate, driven by vortex annihilations, are found to follow a nonthermal power law. Considering vortex correlations in a statistical model, the long-time departure from the nonthermal fixed point is related to vortex-antivortex pairing. The studied nonthermal fixed points are accessible in cold-gas experiments. The results shed light on fundamental aspects of superfluid turbulence and have strong potential implications for related phenomena, for example, in early universe inflation or quark-gluon plasma dynamics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据