4.6 Article

Manipulating one- and two-dimensional stimulated-x-ray resonant-Raman signals in molecules by pulse polarizations

期刊

PHYSICAL REVIEW A
卷 86, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.86.033429

关键词

-

资金

  1. Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Department of Energy
  2. National Science Foundation [CHE-1058791]
  3. National Institutes of Health [R01 GM-59230]
  4. Direct For Mathematical & Physical Scien
  5. Division Of Chemistry [1058791] Funding Source: National Science Foundation

向作者/读者索取更多资源

The simulation of spontaneous (RIXS) and stimulated x-ray Raman scattering (SXRS) signals in isotropic samples requires rotational averaging of a fourth-rank tensor product of two polarizabilities. Attosecond stimulated x-ray Raman spectroscopy excites multiple valence transitions covered by the pulse bandwidths. These excitations depend on the orientation of the molecule with respect to the pulse polarizations in the laboratory frame, making the response a high-rank tensor operator. Many contributions to the response coming from different tensor components complicate the analysis and interpretation of these measurements. By using the magic angle between the excitation and detection fields these signals may be expressed as correlation functions of the scalar isotropic polarizabilities, which greatly simplifies their interpretation. We show that a similar simplification of three-pulse two-dimensional stimulated x-ray Raman scattering (2D-SXRS), which depends on a rotationally averaged sixth-rank tensor, is possible by a super magic angle (SMA) combination of two measurements with specific pulse polarization configurations. Calculated SMA 2D-SXRS signals for trans-N-methylacetamide (NMA) at the nitrogen K edge reveal different features compared with the all-parallel polarization configuration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据