4.6 Article

Simulation of laser-induced quantum dynamics of the electronic and nuclear motion in the ozone molecule on the attosecond time scale

期刊

PHYSICAL REVIEW A
卷 86, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.86.043426

关键词

-

资金

  1. John-von-Neumann Institute, Research Centre Juelich [ehu01]
  2. OTKA [NN103251]
  3. CNRS-MTA
  4. [TAMOP 4.2.2.C-11/1/KONV-2012-0001]

向作者/读者索取更多资源

The nonadiabatically coupled dynamics of electrons and nuclei is investigated for the ozone molecule on the attosecond time scale. A coherent superposition of nuclear wave packets located on different electronic states in the Chappuis and in the Hartley bands are created by pump pulses. The multiconfiguration time-dependent Hartree method is used to solve the coupled nuclear quantum dynamics in the framework of the adiabatic separation of the time-dependent Schrodinger equation including nonadiabatic couplings. Our nuclear wave-packet calculations demonstrate that the coherence between Hartley state B and one of the Chappuis states (Chappuis 1) is significantly large, while it is almost negligible for the other two cases (between Hartley B and Chappuis 2 or between Chappuis 1 and Chappuis 2). At present we limited our description of the electronic motion to the Franck-Condon region only due to the localization of the nuclear wave packets around this point during the first 5-6 fs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据