4.6 Article

Propagation front of correlations in an interacting Bose gas

期刊

PHYSICAL REVIEW A
卷 85, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.85.053625

关键词

-

资金

  1. ANR (FAMOUS)
  2. SNSF under Division II and MaNEP
  3. EU

向作者/读者索取更多资源

We analyze the quench dynamics of a one-dimensional bosonic Mott insulator and focus on the time evolution of density correlations. For these we identify a pronounced propagation front, the velocity of which, once correctly extrapolated at large distances, can serve as a quantitative characteristic of the many-body Hamiltonian. In particular, the velocity allows the weakly interacting regime, which is qualitatively well described by free bosons, to be distinguished from the strongly interacting one, in which pairs of distinct quasiparticles dominate the dynamics. In order to describe the latter case analytically, we introduce a general approximation to solve the Bose-Hubbard Hamiltonian based on the Jordan-Wigner fermionization of auxiliary particles. This approach can also be used to determine the ground-state properties. As a complement to the fermionization approach, we derive explicitly the time-dependent many-body state in the noninteracting limit and compare our results to numerical simulations in the whole range of interactions of the Bose-Hubbard model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据