4.6 Article

Streaking and Wigner time delays in photoemission from atoms and surfaces

期刊

PHYSICAL REVIEW A
卷 84, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.84.033401

关键词

-

资金

  1. National Science Foundation, Division of Chemical Sciences, Office of Basic Energy Sciences, Office of Energy Research, US Department of Energy

向作者/读者索取更多资源

Streaked photoemission metrology allows the observation of an apparent relative time delay between the detection of photoelectrons from different initial electronic states. This relative delay is obtained by recording the photoelectron yield as a function of the delay between an ionizing ultrashort extended ultraviolet pulse and a streaking infrared (IR) pulse. Theoretically, photoemission delays can be defined based on (i) the phase shift the photoelectron wave function accumulates during the release and propagation of the photoelectron (Wigner delay) and, alternatively, (ii) the streaking trace in the calculated photoemission spectrum (streaking delay). We investigate the relation between Wigner and streaking delays in the photoemission from atomic and solid-surface targets. For solid targets and assuming a vanishing IR skin depth, both Wigner and streaking delays can be interpreted as an average propagation time needed by photoelectrons to reach the surface, while the two delays differ for nonvanishing skin depths. For atomic targets, the difference between Wigner and streaking delays depends on the range of the ionic potential.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据