4.6 Article

Optomechanical sideband cooling of a micromechanical oscillator close to the quantum ground state

期刊

PHYSICAL REVIEW A
卷 83, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.063835

关键词

-

资金

  1. ERC [SiMP]
  2. EU (Minos)
  3. DARPA/MTO ORCHID
  4. NCCR of Quantum Photonics
  5. Marie Curie IEF

向作者/读者索取更多资源

Cooling a mesoscopic mechanical oscillator to its quantum ground state is elementary for the preparation and control of quantum states of mechanical objects. Here, we pre-cool a 70-MHz micromechanical silica oscillator to an occupancy below 200 quanta by thermalizing it with a 600-mK cold He-3 gas. Two-level-system induced damping via structural defect states is shown to be strongly reduced and simultaneously serves as a thermometry method to independently quantify excess heating due to the cooling laser. We demonstrate that dynamical back action optical sideband cooling can reduce the average occupancy to 9 +/- 1 quanta, implying that the mechanical oscillator can be found (10 +/- 1)% of the time in its quantum ground state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据