4.6 Article

Application of a multisite mean-field theory to the disordered Bose-Hubbard model

期刊

PHYSICAL REVIEW A
卷 83, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.053608

关键词

-

资金

  1. NSERC of Canada

向作者/读者索取更多资源

We present a multisite formulation of mean-field theory applied to the disordered Bose-Hubbard model. In this approach the lattice is partitioned into clusters, each isolated cluster being treated exactly, with intercluster hopping being treated approximately. The theory allows for the possibility of a different superfluid order parameter at every site in the lattice, such as what has been used in previously published site-decoupled mean-field theories, but a multisite formulation also allows for the inclusion of spatial correlations allowing us, e. g., to calculate the correlation length (over the length scale of each cluster). We present our numerical results for a two-dimensional system. This theory is shown to produce a phase diagram in which the stability of the Mott-insulator phase is larger than that predicted by site-decoupled single-site mean-field theory. Two different methods are given for the identification of the Bose-glass-to-superfluid transition, one an approximation based on the behavior of the condensate fraction, and one that relies on obtaining the spatial variation of the order parameter correlation. The relation of our results to a recent proposal that both transitions are non-self-averaging is discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据