4.6 Article

Uncertainty limits for quantum metrology obtained from the statistics of weak measurements

期刊

PHYSICAL REVIEW A
卷 83, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.022106

关键词

-

资金

  1. Japanese Society for the Promotion of Science (JSPS)
  2. Grants-in-Aid for Scientific Research [21540409] Funding Source: KAKEN

向作者/读者索取更多资源

Quantum metrology uses small changes in the output probabilities of a quantum measurement to estimate the magnitude of a weak interaction with the system. The sensitivity of this procedure depends on the relation between the input state, the measurement results, and the generator observable describing the effect of the weak interaction on the system. This is similar to the situation in weak measurements, where the weak value of an observable exhibits a symmetric dependence on initial and final conditions. In this paper, it is shown that the phase sensitivity of a quantum measurement is in fact given by the variance of the imaginary parts of the weak values of the generator over the different measurement outcomes. It is then possible to include the limitations of a specific quantum measurement in the uncertainty bound for phase estimates by subtracting the variance of the real parts of the weak values from the initial generator uncertainty. This uncertainty relation can be interpreted as the time-symmetric formulation of the uncertainty limit of quantum metrology, where the real parts of the weak values represent the information about the generator observable in the final measurement result.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据