4.6 Article

Disordered-quantum-walk-induced localization of a Bose-Einstein condensate

期刊

PHYSICAL REVIEW A
卷 83, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.022320

关键词

-

向作者/读者索取更多资源

We present an approach to induce localization of a Bose-Einstein condensate in a one-dimensional lattice under the influence of unitary quantum-walk evolution using disordered quantum coin operation. We introduce a discrete-time quantum-walk model in which the interference effect is modified to diffuse or strongly localize the probability distribution of the particle by assigning a different set of coin parameters picked randomly for each step of the walk, respectively. Spatial localization of the particle or state is explained by comparing the variance of the probability distribution of the quantum walk in position space using disordered coin operation to that of the walk using an identical coin operation for each step. Due to the high degree of control over quantum coin operation and most of the system parameters, ultracold atoms in an optical lattice offer opportunities to implement a disordered quantum walk that is unitary and induces localization. Here we present a scheme to use a Bose-Einstein condensate that can be evolved to the superposition of its internal states in an optical lattice and control the dynamics of atoms to observe localization. This approach can be adopted to any other physical system in which controlled disordered quantum walk can be implemented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据