4.6 Article

Bose-Hubbard model in a ring-shaped optical lattice with high filling factors

期刊

PHYSICAL REVIEW A
卷 84, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.84.013602

关键词

-

资金

  1. CONICET [PIP 11420090100243, PIP 11420100100083]

向作者/读者索取更多资源

The high-barrier quantum tunneling regime of a Bose-Einstein condensate confined in a ring-shaped optical lattice is investigated. By means of a change of basis transformation, connecting the set of vortex Bloch states and a Wannier-like set of localized wave functions, we derive a generalized Bose-Hubbard Hamiltonian. In addition to the usual hopping rate terms, such a Hamiltonian takes into account interaction-driven tunneling processes, which are shown to play a principal role at high filling factors, when the standard hopping rate parameter turns out to be negative. By calculating the energy and atomic current of a Bloch state, we show that such a hopping rate must be replaced by an effective hopping rate parameter containing the additional contribution an interaction-driven hopping rate. Such a contribution turns out to be crucial at high filling factors, since it preserves the positivity of the effective hopping rate parameter. Level crossings between the energies per particle of a Wannier-like state and the superfluid ground state are interpreted as a signature of the transition to configurations with macroscopically occupied states at each lattice site.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据