4.6 Article

Electromagnetically induced transparency in a five-level Λ system dominated by two-photon resonant transitions

期刊

PHYSICAL REVIEW A
卷 83, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.83.033830

关键词

-

资金

  1. National Natural Science Foundation of China [10874057]
  2. National Basic Research Program of China [2011CB921603]
  3. Scientific Foundation of Education Department of Jilin Province [2010171]
  4. Basic Scientific Research Foundation of Jilin University [200905019]

向作者/读者索取更多资源

We study the steady optical response of a five-level atomic system in the parametric region where resonant two-photon transitions are much stronger than far-detuned single-photon transitions. We find that the concurrent absorption of two weak probe fields can be well suppressed in a narrow spectral region to attain electromagnetically induced transparency (EIT) via quantum destructive interference between different two-photon transition pathways. To gain a deeper insight into relevant physics, we adiabatically reduce this five-level system with trivial single-photon transitions into a three-level system with vanishing single-photon transitions by deriving an effective Hamiltonian. The two systems have almost the same two-photon absorption spectra exhibiting typical EIT features but are a little different in fine details. This means that most characteristics of two-photon quantum destructive interference are reserved after the adiabatic elimination approximation. In addition, we verify by numerical calculations that the two-photon EIT spectra are insensitive to the dipole-dipole interaction of cold Rydberg atoms when the uppermost level has a high principle quantum number.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据