4.6 Article

Quantum transport of bosonic cold atoms in double-well optical lattices

期刊

PHYSICAL REVIEW A
卷 84, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.84.013608

关键词

-

资金

  1. ARO [W911NF-09-1-0248]
  2. DARPA-YFA [N66001-10-1-4025]

向作者/读者索取更多资源

We numerically investigate, using the time evolving block decimation algorithm, the quantum transport of ultracold bosonic atoms in a double-well optical lattice through slow and periodic modulation of the lattice parameters (intra-and inter-well tunneling, chemical potential, etc.). The transport of atoms does not depend on the rate of change of the parameters (as along as the change is slow) and can distribute atoms in optical lattices at the quantized level without involving external forces. The transport of atoms depends on the atom filling in each double well and the interaction between atoms. In the strongly interacting region, the bosonic atoms share the same transport properties as noninteracting fermions with quantized transport at the half filling and no atom transport at the integer filling. In the weakly interacting region, the number of the transported atoms is proportional to the atom filling. We show the signature of the quantum transport from the momentum distribution of atoms that can be measured in the time-of-flight image. A semiclassical transport model is developed to explain the numerically observed transport of bosonic atoms in the noninteracting and strongly interacting limits. The scheme may serve as an quantized battery for atomtronics applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据