4.6 Article

Three-dimensional theory of quantum memories based on Λ-type atomic ensembles

期刊

PHYSICAL REVIEW A
卷 84, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.84.043838

关键词

-

资金

  1. European Project HIDEAS [FP7-ICT-221906]
  2. Marie Curie Research Training Network EMALI [MRTN-CT-2006-035369]

向作者/读者索取更多资源

We develop a three-dimensional theory for quantum memories based on light storage in ensembles of Lambda-type atoms, where two long-lived atomic ground states are employed. We consider light storage in an ensemble of finite spatial extent and we show that within the paraxial approximation the Fresnel number of the atomic ensemble and the optical depth are the only important physical parameters determining the quality of the quantum memory. We analyze the influence of these parameters on the storage of light followed by either forward or backward read-out from the quantum memory. We show that for small Fresnel numbers the forward memory provides higher efficiencies, whereas for large Fresnel numbers the backward memory is advantageous. The optimal light modes to store in the memory are presented together with the corresponding spin waves and outcoming light modes. We show that for high optical depths such Lambda-type atomic ensembles allow for highly efficient backward and forward memories even for small Fresnel numbers F greater than or similar to 0.1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据