4.6 Article

Unitary equilibration after a quantum quench of a thermal state

期刊

PHYSICAL REVIEW A
卷 84, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.84.022115

关键词

-

资金

  1. Oakley Fellowship
  2. European project COQUIT [2333747]
  3. NSF [PHY-803304, PHY-0969969, DMR-0804914.]
  4. Division Of Materials Research
  5. Direct For Mathematical & Physical Scien [804914] Funding Source: National Science Foundation
  6. Division Of Physics
  7. Direct For Mathematical & Physical Scien [969969, 803304] Funding Source: National Science Foundation

向作者/读者索取更多资源

In this work we investigate the equilibration dynamics after a sudden Hamiltonian quench of a quantum spin system initially prepared in a thermal state. To characterize the equilibration we evaluate the Loschmidt echo, a global measure for the degree of distinguishability between the initial and time-evolved quenched states. We present general results valid for small quenches and detailed analysis of the quantum XY chain. The result is that quantum criticality manifests, even at small but finite temperatures, in a universal double-peaked form of the echo statistics and poor equilibration for sufficiently relevant perturbations. In addition, for this model we find a tight lower bound on the Loschmidt echo in terms of the purity of the initial state and the more easily evaluated Hilbert-Schmidt inner product between initial and time-evolved quenched states. This bound allows us to relate the time-averaged Loschmidt echo with the purity of the time-averaged state, a quantity that has been shown to provide an upper bound on the variance of observables.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据