4.6 Article

Condensed ground states of frustrated Bose-Hubbard models

期刊

PHYSICAL REVIEW A
卷 82, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.82.063625

关键词

-

资金

  1. Trinity Hall Cambridge
  2. EPSRC [EP/F032773/1]
  3. Engineering and Physical Sciences Research Council [EP/F032773/1] Funding Source: researchfish
  4. EPSRC [EP/F032773/1] Funding Source: UKRI

向作者/读者索取更多资源

We study theoretically the ground states of two-dimensional Bose-Hubbard models which are frustrated by gauge fields. Motivated by recent proposals for the implementation of optically induced gauge potentials, we focus on the situation in which the imposed gauge fields give rise to a pattern of staggered fluxes of magnitude alpha and alternating in sign along one of the principal axes. For alpha = 1/2 this model is equivalent to the case of uniform flux per plaquette n(phi) = 1/2, which, in the hard-core limit, realizes the fully frustrated spin-1/2 XY model. We show that the mean-field ground states of this frustrated Bose-Hubbard model typically break translational symmetry. Given the presence of both a non-zero superfluid fraction and translational symmetry breaking, these phases are supersolid. We introduce a general numerical technique to detect broken symmetry condensates in exact diagonalization studies. Using this technique we show that, for all cases studied, the ground state of the Bose-Hubbard model with staggered flux alpha is condensed, and we obtain quantitative determinations of the condensate fraction. We discuss the experimental consequences of our results. In particular, we explain the meaning of gauge invariance in ultracold-atom systems subject to optically induced gauge potentials and show how the ability to imprint phase patterns prior to expansion can allow very useful additional information to be extracted from expansion images.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据