4.6 Article

Impossibility of large phase shifts via the giant Kerr effect with single-photon wave packets

期刊

PHYSICAL REVIEW A
卷 81, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.81.043823

关键词

-

资金

  1. National Science Foundation

向作者/读者索取更多资源

An approximate analytical solution is presented, along with numerical calculations, for a system of two single-photon wave packets interacting via an ideal, localized Kerr medium. It is shown that, because of spontaneous emission into the initially unoccupied temporal modes, the cross-phase-modulation in the Schrodinger picture is very small as long as the spectral width of the single-photon pulses is well within the medium's bandwidth. In this limit, the Hamiltonian used can be derived from the giant Kerr effect for a four-level atom, under conditions of electromagnetically induced transparency; it is shown explicitly that the linear absorption in this system increases as the pulse's spectral width approaches the medium's transparency bandwidth, and hence, as long as the absorption probability remains small, the maximum cross-phase-modulation is limited to essentially useless values. These results are in agreement with the general, causality-based, and unitarity-based arguments of Shapiro and Razavi [J. H. Shapiro, Phys. Rev. A 73, 062305 (2006); J. H. Shapiro and M. Razavi, New J. Phys. 9, 16 (2007)].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据