4.6 Article

Time-resolved Fourier-transform infrared emission spectroscopy of Ag in the (1300-3600)-cm-1 region: Transitions involving f and g states and oscillator strengths

期刊

PHYSICAL REVIEW A
卷 82, 期 2, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.82.022502

关键词

-

资金

  1. Grant Agency of the Academy of Sciences of the Czech Republic [IAA400400705, KAN 100500652]

向作者/读者索取更多资源

We report on a study of the emission spectra of Ag vapor in a vacuum (10(-2) Torr) formed in ablation of an Ag metal target by a high-repetition rate (1.0 kHz) pulsed nanosecond ArF laser (lambda = 193 nm, output energy of 15 mJ). The time-resolved infrared emission spectrum of Ag was recorded in the 1300- to 3600-cm(-1) spectral region using the Fourier transform infrared spectroscopy technique with a resolution of 0.02 cm(-1). The time profiles of the measured lines have maxima at 5-6 mu s after a laser shot and display nonexponential decay with a decay time of 3-7 mu s. The lines reported here are given with an uncertainty of 0.0005-0.016 cm(-1). The line classification is performed using relative line strengths expressed in terms of transition dipole matrix elements calculated with the help of the Fues model potential; these calculations show agreement with the large experimental and calculated data sets available in the literature. In addition to these data we also calculate transition probabilities and line and oscillator strengths for a number of transitions in the 1300- to 5000-cm(-1) range between (4d(10))nl(j) states of Ag.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据