4.6 Article

Computational studies of x-ray scattering from three-dimensionally-aligned asymmetric-top molecules

期刊

PHYSICAL REVIEW A
卷 81, 期 4, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.81.043425

关键词

-

资金

  1. Office of Basic Energy Sciences, US Department of Energy [DE-AC02-06CH11357]

向作者/读者索取更多资源

We theoretically and numerically analyze x-ray scattering from asymmetric-top molecules three-dimensionally aligned using elliptically polarized laser light. A rigid-rotor model is assumed. The principal axes of the polarizability tensor are assumed to coincide with the principal axes of the moment of inertia tensor. Several symmetries in the Hamiltonian are identified and exploited to enhance the efficiency of solving the time-dependent Schrodinger equation for each rotational state initially populated in a thermal ensemble. Using a phase-retrieval algorithm, the feasibility of structure reconstruction from a quasiadiabatically aligned sample is illustrated for the organic molecule naphthalene. The spatial resolution achievable strongly depends on the laser parameters, the initial rotational temperature, and the x-ray pulse duration. We demonstrate that for a laser peak intensity of 5 TW/cm(2), a laser pulse duration of 100 ps, a rotational temperature of 10 mK, and an x-ray pulse duration of 1 ps, the molecular structure may be probed at a resolution of 1 angstrom.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据