4.6 Article

Multiconfigurational time-dependent Hartree method for bosons: Many-body dynamics of bosonic systems

期刊

PHYSICAL REVIEW A
卷 77, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.77.033613

关键词

-

向作者/读者索取更多资源

The evolution of Bose-Einstein condensates is amply described by the time-dependent Gross-Pitaevskii mean-field theory which assumes all bosons to reside in a single time-dependent one-particle state throughout the propagation process. In this work, we go beyond mean field and develop an essentially exact many-body theory for the propagation of the time-dependent Schrodinger equation of N interacting identical bosons. In our theory, the time-dependent many-boson wave function is written as a sum of permanents assembled from orthogonal one-particle functions, or orbitals, where both the expansion coefficients and the permanents (orbitals) themselves are time-dependent and fully determined according to a standard time-dependent variational principle. By employing either the usual Lagrangian formulation or the Dirac-Frenkel variational principle we arrive at two sets of coupled equations of motion, one for the orbitals and one for the expansion coefficients. The first set comprises of first-order differential equations in time and nonlinear integrodifferential equations in position space, whereas the second set consists of first-order differential equations with time-dependent coefficients. We call our theory multiconfigurational time-dependent Hartree for bosons, or MCTDHB(M), where M specifies the number of time-dependent orbitals used to construct the permanents. Numerical implementation of the theory is reported and illustrative numerical examples of many-body dynamics of trapped Bose-Einstein condensates are provided and discussed. The convergence of the method with a growing number M of orbitals is demonstrated in a specific example of four interacting bosons in a double well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据